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Experimental phasing of diffraction data from macromole-

cular crystals involves deriving phase probability distributions.

These distributions are often bimodal, making their weighted

average, the centroid phase, improbable, so that electron-

density maps computed using centroid phases are often

non-interpretable. Density modification brings in information

about the characteristics of electron density in protein crystals.

In successful cases, this allows a choice between the modes

in the phase probability distributions, and the maps can cross

the borderline between non-interpretable and interpretable.

Based on the suggestions by Vekhter [Vekhter (2005), Acta

Cryst. D61, 899–902], the impact of identifying optimized

phases for a small number of strong reflections prior to the

density-modification process was investigated while using the

centroid phase as a starting point for the remaining reflections.

A genetic algorithm was developed that optimizes the quality

of such phases using the skewness of the density map as a

target function. Phases optimized in this way are then used in

density modification. In most of the tests, the resulting maps

were of higher quality than maps generated from the original

centroid phases. In one of the test cases, the new method

sufficiently improved a marginal set of experimental SAD

phases to enable successful map interpretation. A computer

program, SISA, has been developed to apply this method for

phase improvement in macromolecular crystallography.
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1. Introduction

Experimental SAD phasing allows us to obtain phase infor-

mation by solving equations based on differences between

Friedel pairs of structure factors. The possible solutions for a

reflection are represented in the form of a probability distri-

bution (Blow & Crick, 1959; Otwinowski, 1991; McCoy et al.,

2004). Towards solving a structure, this phasing information is

passed on to density modification, which exploits the expected

features of molecular maps to break the ambiguity that exists

in the initial distribution (Wang, 1985). In the case where

many reflections have accurate phases, obtaining an inter-

pretable map is straightforward. In contrast, when the

majority of the reflections are poorly determined, resolving

the ambiguity remains a difficult task.

We selected a SAD data set from gene V protein (Skinner et

al., 1994) as an example of this situation. Solving this structure

from just the peak-wavelength SAD data is challenging owing

to the low quality of the electron-density map obtained after

density modification. However, the structure could be solved

from a MAD data set. This is a common situation when

experimental phases result in a poor map.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dz5285&bbid=BB30
http://crossmark.crossref.org/dialog/?doi=10.1107/S0907444913018167&domain=pdf&date_stamp=2013-09-20


Vekhter (2005) presented an interesting study in which it

was shown that by assigning low-error phases to a few of the

strongest reflections, the entire set of phases could become

significantly improved after density modification. There were

five structures with 5000–17 000 reflections in the test and it

was very encouraging to see that such large data sets could be

improved by having only the 124 strongest reflections assigned

the correct phase. Vekhter (2005) assigned correct phases

calculated from the model and proposed that in practice

phases could be measured experimentally by a three-beam

diffraction experiment. Here, we follow up this analysis by

exploring computational methods to select improved phases

for a few of the strongest reflections before feeding them into

density modification. We addressed the following points to

pursue this goal.

(i) We tested whether the map skewness (Podjarny &

Yonath, 1977), which describes the extent to which the

extreme values in a map tend to be systematically positive or

negative, could be used to identify the correct phases for a few

of the strongest reflections. We performed this test by devel-

oping a genetic algorithm that searches for combinations of

phases for the strongest reflections. In the presence of the

entire data set, these led to better values of the skewness.

We observed that correct phases for the strongest reflections

correlate with increasing values of the map skewness. A

computer program, SISA (‘SIR/SAD phase optimization’),

has been written that will be incorporated into the PHENIX

software package (Adams et al., 2010).

(ii) For three ‘difficult structures’, we tested the efficiency of

having the skewness as a target function to implement the

algorithm that optimizes the phase quality for the strongest

reflections. In order to observe the effect of this improvement,

we used the optimized data set for density modification and

compared the results with those obtained from density

modification using the original data.

We selected the data sets presented in Table 1 because they

were borderline cases in which density-modified phases were

not good enough to generate an interpretable map.

There are two key ideas that we exploit here in order to

improve the quality of the experimental maps. The first

involves the role of the strongest reflections. We tried repla-

cing the centroid phases of the 100 strongest reflections with

correct phases (calculated from the PDB model) for one of

our test cases, the gene V protein; we passed this set of

reflections on to density modification and calculated a map

correlation as defined in equation (2) (see below; Read, 1986;

Lunin & Woolfson, 1993) for the density-modified map. In line

with the observations of Vekhter (2005), the map correlation

of the new set of structure factors, consisting of the 100

strongest reflections with optimized phases and the remaining

reflections with unmodified phases, increased from 0.45 (the

value obtained when the original reflection set was used) to

0.66 (Fig. 1a).

The importance of these strongest reflections can also be

appreciated by noting that the mean-square error in electron

density introduced by a phase error is proportional to the

squared amplitude of the reflection. The 100 strongest

reflections (only 4% of all reflections) of gene V protein

contribute 23% of the sum of squared amplitudes for the

whole data set. This also indicates that there is a limited

number of the strongest reflections that can be improved,

because there will be diminishing returns in the sum of

squared amplitudes if more reflections are included. As is to

be expected, this 23% contribution to the sum of squared

amplitudes is not distributed uniformly among different

resolution shells; 64% of this 23% share of the total sum of

squared amplitudes is contributed by reflections in the lowest

resolution shell (>10 Å).

Considering that a few of the strongest reflections can have

an impact on density modification, it is possible to implement

algorithms that search for phase combinations in this compact

solution space. As we have knowledge about phases from

experimental phasing, there is no need to search the entire

range of values from 0 to 2�, but we can limit the choice of

phases for a reflection based on its probability distribution.

The second key idea is based on measures of molecular map

quality. Note that we are going to choose alternative phases

for only a few of the strongest reflections. The rest of the

reflections will be used with their original centroid phase and

any new map will be calculated using the complete set of

reflections. In this way, the phases for the reflections that are

not varied provide a background of known information used

for the map calculation, and the phases that are varied are

being tested for consistency with the other phases. The newly

generated maps are assumed to have some molecular features

as a starting point that we could use to calculate a measure of

map quality. We chose the skewness of the density values in

an electron-density map in this work, as it was pointed out by

Terwilliger et al. (2009) that it was the most accurate indicator

for estimating map quality out of ten measures tested. We set

the skew function (1) as our target function for the search

algorithm,
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Table 1
Summary of data for test proteins.

Structure
PDB
entry

Space
group

Resolution for
search (Å)

No. of non-H
atoms

Unit-cell parameters (Å, �)

Case I: gene V protein (single-stranded DNA-binding
protein; Skinner et al., 1994)

1vqb C2 2.6 682 a = 75.81, b = 27.92, c = 42.40,
� = 103.1

Case II: RNA comprising domains 5 and 6 of the yeast ai5�
group II self-splicing intron (Zhang & Doudna, 2002)

1kxk P6122 3.5 1497 a = b = 91.68, c = 241.65,

Case III: heterogeneous ribonucleoprotein A1 (Shamoo et al.,
1997)

1ha1 P21 3.0 1338 a = 38.1, b = 44.0, c = 56.1,
� = 94.8



skew ¼
h�3i

h�2
i

3=2
: ð1Þ

Fig. 1(b) shows a comparison of the electron-density histo-

gram generated from phases from the SAD data (’B) and

phases from the solved structure (’C) for the gene V protein.

Electron-density maps for the two sources of phase were

generated accordingly and a threshold of �5� was applied for

the density cutoff in the maps. The skewness was calculated

using (1) and values of about 0.22 and 1.11 were obtained for

the first and the second case, respectively. It is necessary to

apply the threshold cutoff to truncate the density map, since

most of the starting experimental maps tend to have some

highly positive and negative values. The truncation helps to

prevent extreme map-skewness values resulting from a few

very large peaks.

2. The method

We chose a genetic algorithm as the optimizing tool because

of the useful features of such algorithms in problem repre-

sentation and search-space exploration. Genetic algorithms

were pioneered by Holland (1975) and have been imple-

mented as search tools in a variety of methods in X-ray

diffraction such as small-angle scattering to determine the

shapes of molecules (Franke & Svergun, 2009), powder

diffraction to recover phases (Shankland et al., 1997; Harris

et al., 2004; Feng & Dong, 2007) and ab initio phasing in

macromolecular crystallography at low resolution (Miller et

al., 1996; Webster & Hilgenfeld, 2001; Zhou & Su, 2004;

Immirzi et al., 2009).

Our implementation takes the phase probability distribu-

tions of the strongest reflections selected as input, creates a

data structure analogous to chromosomes to store these

phases, manipulates each chromosome by genetic operators,

selects only those with a higher skew value than the parents

and outputs the solutions with a high value of the target

function (Fig. 2). At the end of each run, we measure two

quantities: (i) the map correlation (equation 2; see below)

between the optimized phases (’S) and the calculated phases

from the correct model (’C) for only the strongest reflections

selected in the search and (ii) the map correlation between the

density-modified map (generated by combining the optimized

phases for the selected reflections with the centroid phases for
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Figure 1
Two key ideas exploited in the implementation of the method. (a) A comparison of two density-modified maps generated from SAD data for the gene V
protein: the first map was derived from a reflection set with the original centroid phases (’B), while the second map was derived by assigning correct
phases (from the PDB model) to the 100 strongest reflections from the same data set. The map correlation of the second map was significantly improved
from 0.45 to 0.66. (b) A comparison of two electron-density histograms: the histogram on the left was generated from the electron-density map calculated
using the centroid phases (’B) resulting in a small value of map skewness (skew = 0.22; see equation 1), while the histogram on the right was generated
from the map calculated using the correct phases (’C), resulting in a large value of map skewness (skew = 1.11).



the rest of the reflections and passing them on to density

modification; all reflections are used in the process) and the

calculated map (generated from the solved structure).

CPf�1; �2g ¼

PN

i¼1

FobsðiÞ
2 cos½’CðiÞ � ’SðiÞ�

PN

i¼1

FobsðiÞ
2

; ð2Þ

where N is the number of selected reflections.

We divided our implementation of the SISA procedure

into three parts: firstly, initializing the phase choices (stored in

a chromosome) from the phase probability distribution func-

tion; secondly, applying a genetic algorithm and genetic

operators, with the target function being the skewness of the

density map; and thirdly, selecting the best solution, assigning

new figures of merit and passing them on to density modifi-

cation and model building. All parts of the algorithms were

written in Python together with the usage of the cctbx libraries

(Grosse-Kunstleve et al., 2002).

2.1. Initialization of the phase choices

We generated phase choices for a reflection according to

its phase probability distribution function encoded in the

Hendrickson–Lattman coefficients (Hendrickson & Lattman,

1970). An example of selecting a phase for a reflection is

shown in Fig. 3. In the case of this bimodal distribution, a

centroid phase (’B) would traditionally be selected. In our

method, we allowed phases from the phase probability

distribution to be selected. In practice, we converted the phase

probability distribution (Fig. 3a) to a cumulative distribution

(Fig. 3b). The algorithm is equivalent to picking a random

number in the range 0–1, drawing a line horizontally to

intersect with the cumulative function and selecting the phase

at this point of the curve. By doing this many times, we could

sample all possible choices of phase for that reflection. It is

also clear that those phases with higher probability are most

likely to be selected because of the large slope of the cumu-

lative function. At the end, we generated a number of phase

choices according to our desired number of density maps (the

size of the population for the genetic algorithm). This process

was carried out for each of the selected reflections.

Note that we only applied these alternative choices to

varying numbers of the strongest reflections. The rest of the

reflections, which comprised the majority, maintained the

centroid phases (’B). Even though the phases of the remaining

reflections were not perturbed, they play an important role
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Figure 3
Selection of phase choices other than ’B for a reflection. (a) Phase-
probability distribution function. (b) Cumulative distribution function
calculated from (a). (c) Chromosomes storing phase choices for the
genetic algorithm.

Figure 2
Implementation of the genetic algorithm.



in interacting with the varied reflections to determine the skew

value. We show in x3 that phase improvements could only be

obtained when the varied reflections are used with the other

reflections to generate the density map and calculate the map

skewness as the target function for the search.

2.2. The genetic algorithm

The second part is the implementation of the genetic

algorithm. This type of stochastic search algorithm has two

important features. The first feature is the way that the

information representing the possible solution to the problem

is stored. The genetic algorithm treats each set of answers

as a chromosome, which looks like the output that we have

just constructed from the first part (Fig. 3c), where each phase

value is a possible answer for a reflection. Note that the values

stored in the chromosomes are not represented by binary

strings but by the set of non-negative integers from 0 to 359.

Our algorithm treats these many combinations of phases that

we have just created as a starting pool of chromosomes.

The second feature comprises the selection and recombi-

nation process. In order to increase search performance, we

chose the geographical-restraint technique (Connor, 1994)

over the probability-weighted (also known as roulette-wheel)

method (Bäck et al., 1997) for this selection process. This

decision was based on a comparison of the search performance

by using the SAD data from gene V and employing these two

selection techniques to search for phases for the 100 strongest

reflections. The genetic algorithm was set to terminate when

all chromosomes in the population pool became homogeneous

(the average of the map correlations calculated from all pairs

of chromosomes in the same generation was >0.9). We needed

around 95–97 generations when using the roulette-wheel

selection but only around 9–11 generations with the geo-

graphical restraint for the termination of the algorithm. Both

selection techniques resulted in a similar quality of the map

correlation (around 0.53) calculated from the 100 optimized

phases.

Fig. 4 illustrates how the geographical-restraint technique

was implemented for the selection process. At any time, a

parent chromosome is selected from a random location on a

map where another smaller map is drawn to cover the selected

position (Fig. 4a). The algorithm performs random walks on

this smaller map to select candidates for recombination and

chooses the one with the highest fitness value. In comparison

with the roulette wheel, where only a group of chromosomes

with high fitness values is likely to be selected at any given

time, the geographical-restraint method allows chromosomes

at different locations on the fitness landscape to be selected

for the recombination process even though they do not belong

to the group with high fitness values. This prevents a prema-

ture loss of diversity in the population.

The evolution process is carried out by the application of a

mutation operator and recombination of the parents with a

crossover operator. These two mechanisms are controlled by
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Figure 4
Geographical-restraint technique used in the selection and recombination process for the genetic algorithm. (a) A parent is selected (black location)
from a random location on the fitness landscape, where a local map is drawn around it. By performing random walks on this local map, more
chromosomes are selected as candidates (medium grey) and the fittest one (dark grey) is chosen for the recombination process. (b) A pair of selected
chromosomes is chosen for recombination under the control of probability of crossover and mutation. The uniform crossover technique was used for the
crossover operation, where only locations indicated on the crossover template were exchanged between the parents. The mutation operator occurred on
randomly selected locations on the child chromosomes where their phases were replaced by new phases redrawn from the phase probability distribution.



the probabilities of crossover and mutation accordingly, so

that many of the fitter solutions and some unfit solutions

would be selected for the next generation.

For the recombination process, we chose uniform crossover,

which allows randomly selected segments from the parents’

chromosome to be exchanged (Sywerda, 1989). It was

suggested as a suitable operator for problems with complex

search spaces in which the practical population size could not

meet the necessary sampling accuracy (De Jong & Spears,

1991), which might be the case for this work. In our problem

setting, one way to imagine the size of the solution space is to

consider the number of phase sets that must be tested for 1000

reflections. If each reflection has two choices for the phase

(as in the case of the bimodal distribution), there are 21000

combinations of phases to be tested in order to obtain the

correct answer. In order to still be able to compute some

answer, our approach only generates around 400 combinations

of phases per test run and this number is much smaller than

the number required to obtain a correct answer: the uniform

crossover encourages disruption of the chromosomes, which

may help the algorithm to explore more possibilities for

optimized phases.

An example of how the recombination process works with

our method is illustrated in Fig. 4(b). From the population

pool, a pair of phase sets is selected. In order to recombine

their chromosomes, a random template is generated indicating

locations where the genes will be swapped. This template is

newly created every time crossover occurs. With a certain

probability, some of the genes of these two new offspring

chromosomes are also mutated. When mutation occurs, the

algorithm randomly selects a new phase from the original

phase probability distribution of the reflection. The target

function is then recalculated from the new phase combination.

The parent pair is replaced by its offspring only when the

latter has a higher value for the target function.

2.3. The composite solution

The last part of the process concerns the selection of the

best solution from the optimization process. To sample solu-

tion space, several independent microruns were carried out so

that many solutions from different starting points could be

obtained. Once all runs were completed, we noticed that there

were different solutions that could produce similarly high

values of map skewness, i.e. for a selected value of map

skewness the value of phase difference between the best

solution and the worst solution could be up to around 15�. In

order to avoid selecting the worst solution, those solutions for

which the value of the fitness was higher than the average

value were selected and their centroid phases were calculated

as the best solution. This composite best solution is the output

from each run of the search process.

We combined these optimized phases and updated figures

of merit with the centroid phases and their original figures of

merit and then measured the impact of optimizing the stron-

gest reflections by feeding this new set of reflections to density

modification. As discussed below (see Fig. 6), figures of merit

for the selected reflections were either updated by increasing

the initial value by 0.2 or left unchanged.

Throughout each run, the genetic algorithm was controlled

by the following parameters.

(i) Nchromosomes, the number of chromosomes.

(ii) Ngenerations, the number of generations.

(iii) Pcross, the probability of crossover (0.0–1.0).

(iv) Pmutate, the probability of mutation (0.0–1.0).

(v) Rcrosspoints, the number of crossover points represented

by a fraction of the chromosome size.

(vi) Nmutatepoints, the number of mutation points.

These parameters determine the size of the solution space that

each run can represent and the amount of computing time

required.

3. Results and discussion

3.1. Case I: gene V protein

The SAD data set from this crystal yielded phases with a

mean figure of merit of 0.42 for the entire set of reflections. By

supplying the data set with the sequence of the molecule to an

automatic model-building program, PHENIX AutoBuild, we

could obtain a model at the end of the run with 42 out of 87

residues built with R = 0.46 and a map correlation of 0.52. The

data set (about 2500 reflections) was collected from a crystal

belonging to space group C2 with unit-cell parameters as

shown in Table 1.

There are two points that directed our test procedures here.

We were interested to determine whether the skew function

could be used to improve the phases of a few strongest

reflections and, if so, to determine whether the new phases

could make an impact on the density modification. To meet

the first goal, we chose to run the optimization algorithm for

varying numbers of strongest reflections. Apart from the

different numbers of reflections, we assigned the same para-

meters (Nchromosomes = 400, Ngenerations = 100, Pcross = 0.95,

Pmutate = 0.01, Rcrosspoints = 0.2 and Nmutatepoints = 1) to the

genetic algorithm for all of the runs and terminated the

procedure when every pair of phase sets in the chromosome

had a map correlation of >0.9. This set of values for the

parameters was selected among various sets of test values

because it appeared to yield optimum results while retaining

satisfactory computing performance. To observe the changes

in phase quality, we calculated the map correlations (2) for a

particular chromosome, which stored phase choices for the

selected reflections, in comparison to the known ’C.

We tested the optimization procedure by selecting the 20,

30, 100 and 500 strongest reflections. To measure the quality of

the phases, we generated a scatter plot (Fig. 5) between the

map correlation calculated using only the selected reflections

in the search (vertical axis) and the map skewness (horizontal

axis) with one particular point representing a set of phases

for selected reflections. The colour, which changes from light

green to dark blue, represents the number of generations of

optimization that were necessary. The square and diamond

markers represent ’B and the optimized phases ’S, respec-
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tively. Note that ’S is the new centroid phase calculated from

the selected chromosomes that have a skew value greater than

the average. These plots also reveal the variation of overall

phase quality during the optimization process, as can be seen

from the series of filled dots. Each filled dot represents the

phase quality of the centroid phases computed from a

collection of phase sets with similar skew values. These

centroid phases tend to have higher phase quality than the

individual samples, as evident in particular when larger

numbers of reflections are varied.

These plots tell us that at least 30 strongest reflections

should be selected in order to obtain phase improvements,

because with this minimum number of reflections chosen we

were able to obtain optimized phases (’S) with better map

correlations than those calculated using the centroid phases

(’B). As we increased the number of selected reflections, we

observed that the algorithm achieved higher values of map

skewness with less overall average improvement in phase

quality for the varied reflections. In addition, we also noticed

that most of this improvement occurred for reflections with a

figure of merit larger than 0.2 (Fig. 6a). We omitted these

reflections from our subsequent tests.

The next step is to test the impact of these optimized phases

on density modification. Here, we tried two ways to use the

figure of merit for the strongest reflections selected: the

original figures of merit and a slight increase of the original

figures of merit (+0.2). It was possible to obtain improvements

after density modification with the original figures of merit,

but a slight inflation of the figures of merit led to even better

results (Fig. 6b). Another possibility is to compute the figure

of merit from the distribution of phase values among the

chromosomes (which store phases for the genetic algorithm)

selected at the end of the search process; however, the genetic

algorithm converged with a population with very similar phase

values for each reflection, giving a distribution that peaked at

the optimized phase (figure of merit close to 1).

Iterative searching helped to improve the quality of phases

when optimizing the phases of more than 100 reflections; for

500 reflections, searching for phases for 100 reflections incre-

mentally resulted in an averaged map correlation of 0.56 (for

500 selected reflections) from five independent runs (the map
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Figure 6
(a) Quality of the optimized phases for the 500 strongest reflections
grouped according to their original figure of merit. (b) A comparison of
the quality of density-modified maps generated using the original figures
of merit and the original figures of merit increased by 0.2.

Figure 5
Measures of the quality of the optimized phases for the strongest
reflections selected in the search. The measures were calculated using the
map correlation coefficients (equation 2) of the optimized phases (’S)
and the known phases (’C). Each dot represents a set of phases yielding
a certain skew value of the density map and a certain value of map
correlation. The filled dots show the map correlation coefficients of the
centroid phases calculated from a group of phases with similar skew
value. All plots show the results from five independent runs, with a square
marker representing the original centroid phases ’B and a diamond
marker representing the optimized phases ’S selected as the output of the
search process for (a) the 20 strongest reflections, (b) the 30 strongest
reflections, (c) the 100 strongest reflections and (d) the 500 strongest
reflections.



correlation of ’B was 0.48 and the averaged map correlation of

the optimized phases without iteration was 0.51; see Fig. 7a).

Using the iterative search mode, we performed five inde-

pendent runs for the 100, 500 and 1000 strongest reflections.

We measured the map correlations of the optimized phases

(’S) for the selected reflections (Fig. 7a) and combined these

selected reflections (with the optimized phases) with the rest

of the reflections (with the original centroid phases) for

density modification. We calculated the map correlations of

the density-modified phases for all reflections to observe the

impact of the selected strongest reflections and their opti-

mized phases (Fig. 7b).

The results in Fig. 7 are grouped according to the number of

strongest reflections; the error bar shows the mean and �1�
of the map correlations obtained from five independent runs.

For each group, the quality of ’B for the selected number of

reflections is shown using a square marker.

The optimized phases for all of the tests (with 100, 500 and

1000 strongest reflections) improved the quality of the density-

modified maps; the map correlation increased from 0.45

(density-modified map using ’B) to averaged map correlations

(from five runs) of 0.52, 0.57 and 0.55, respectively. Iteratively

improving the quality of the phases was still possible even

when the 1000 strongest reflections were selected; however,

the density-modified phases (all reflections) for the 500

strongest reflection cases were sufficient to gain an improve-

ment in the subsequent model-building cycles. We performed

around 20 cycles of automatic model building using PHENIX

AutoBuild for the density-modified map with the lowest and

highest map correlation and obtained final maps with map

correlations of 0.75 and 0.8 (the original centroid phases

resulted in a map correlation of 0.52); the best map delivered

an almost complete structure (84 out of 87 residues were

found with an R and Rfree of 0.20 and 0.27, respectively).

The remaining reflections that were kept unvaried play an

important role in obtaining phase improvement for the varied

reflections. We ran two tests for the 100 and 500 strongest

reflections: one using only the selected strongest reflections

and another using all reflections to calculate the map skewness

during the search (but with only the selected strongest

reflection varied). Results for both the 100 and the 500

strongest reflections show that phase improvement could only

be obtained when we used all of the reflections to generate the

density map and calculate map skewness (the target function

of the search); the map correlation increased to an average

value of 0.55 (for five runs) for the 100 strongest reflections

(Fig. 8a) and to 0.57 for the 500 strongest reflections (Fig. 8b);

no improvement was observed when only the selected stron-

gest reflections were used in the search.

We tried to investigate whether increasing the population

size in the genetic algorithm could help to improve the results

when optimizing the phases of more than 100 reflections. We

performed ten runs with an increase in the population size

from 400 to 2500 to search for the phases of the 500 strongest

reflections. Leaving other parameters for the search at the

same values as used previously, we obtained similar values of

map correlation for the 500 strongest reflections as when a

population size of 400 was used in the tests.

3.2. Cases II and III

The improvement after density modification and model

building for the SAD data set of the gene V protein shows that

map skewness can be used as a target function to search for

more accurate phases than ’B. In order to investigate whether

the same method can be applied to other cases, we selected

two further data sets (cases II and III in Table 1) which had

failed to give complete structures after density modification

and model building.

The same protocol was applied to these two data sets as for

the gene V protein. We first searched for phases for the 100,

500 and 1000 strongest reflections (using an iterative search

for the latter two) using the genetic algorithm and obtained

results from five independent runs in each test. We calculated

the map correlation coefficients for all of the optimized phases

(’S) in comparison to the known structure (’C), which was
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Figure 7
Results of running five independent trials on SAD data from the gene V
protein to search for the phases of 100, 500 and 1000 selected strongest
reflections. (a) Map correlations of only the selected reflections for the
optimized phases. (b) Map correlations of all reflections for the density-
modified maps.



solved using different data sets. After the search operations

were complete, we recombined the new set of phases for the

selected reflections (inflating their original figures of merit

slightly by adding 0.2) with the original centroid phases (’B)

of the remaining reflections and passed them on to density

modification (using PHENIX AutoBuild). We collected the

map correlations of the density-modified maps from the runs

to investigate the impact of the new phase sets.

The quality of the optimized phases was improved for all of

the tests using SAD data for the RNA comprising domains 5

and 6 of the yeast ai5� group II self-splicing intron (group II

intron; case II), regardless of the number of strongest reflec-

tions selected (Fig. 9a). The density-modified maps generated

from the new reflection files (with the optimized phases and

the remaining centroid phases) were significantly improved;

the averaged map correlation for all of the tests (with varying

numbers of selected strongest reflections) increased from 0.56

(the map correlation of the density-modified map using the

original centroid phases) to 0.70 (Fig. 9b); this improvement

could be obtained with only the 100 strongest reflections

optimized.

We noted that subsequent model-building processes

resulted in a similar map quality for the data set with only

the original centroid phases and for that with both the original

centroid phases and the optimized phases. The map correla-

tion of the density-modified maps generated from the centroid

phases (0.56) also increased to around 0.7 at the end of these

iterative density-modification and model-building cycles: the

value that was obtained after one density modification for the

data set with the optimized phases included.

We could obtain phase improvements after the search for

the heterogeneous ribonucleoprotein A1 (hnRNP; case III),

but no impact was observed on the density-modified maps

(Fig. 10). Similarly to previous test cases, the average

improvements of the optimized phases decreased when more
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Figure 9
Results of running five independent trials for SAD data from the group II
intron to search for phases for the 100, 500 and 1000 selected strongest
reflections. (a) Map correlations of only the selected reflections for the
optimized phases. (b) Map correlations of all reflections for the density-
modified maps.

Figure 8
Comparisons of map correlations of the optimized phases (’S) from the
tests using the varied and the remaining reflections with map correlations
from the tests using only the varied reflections for the calculation of map
skewness as the target function for the search. The error bar on the plot
indicates average and �1� map correlations obtained from five runs. The
square marker indicates map correlation calculated using ’B. (a) The 100
strongest reflections case. (b) The 500 strongest reflections case.



reflections were selected. Density modification for all three of

the test runs (100, 500 and 1000 strongest reflections) and for

the centroid phases yielded similar results with a map corre-

lation of around 0.7. However, an impact on density modifi-

cation was not observed in this case; this may be because

density modification generated from the centroid phases

already resulted in a usable map.

3.3. Impact of the optimized phases on density modification

Depending on the quality of the initial phases, our method

can significantly improve density modification and model

building. In all three test cases, the map correlations of the

strongest reflections were improved after the optimization

(the results for the 500 strongest reflections are shown in

Fig. 11a). In the case of hnRNP, however, the density modi-

fication had already improved the quality of the original

centroid phases to yield a map with reasonably good quality,

so that the optimized phases did not provide any further

improvement and the search was not necessary. When the

density modification had resulted in a less superior map

quality, such as in the cases of gene V and group II intron, the

optimized phases for the selected strongest reflections had a

strong impact on the quality of density modification and the

ease of model building (Fig. 11b).

4. Conclusions

Two key ideas have been explored in this work: firstly, redu-

cing the phase errors in a small set of the strongest reflections

can have a large impact, and secondly, map skewness is a

highly effective measure of phase quality. These ideas were

implemented in a computer program, SISA, which applies a

genetic algorithm to improve the quality of the density map

after density modification, leading to greater success in

subsequent model building. Results using the three test cases

show that the phases of around 1000 selected strongest

reflections could be improved through an iterative search

using map skewness as the target function. Based on tests that

varied the number of strongest reflections (100, 500 or 1000)
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Figure 11
(a) Map correlations of the optimized phases and the original centroid
phases for the 500 strongest reflections of the three test cases: the gene V
protein, the group II intron and hnRNP. (b) Map correlations of the
density-modified maps generated from the reflections with optimized
phases and without optimized phases, respectively.

Figure 10
Results of running five independent trials for SAD data for hnRNP. (a)
Map correlations of only the selected reflections for the optimized phases.
(b) Map correlations of all reflections for the density-modified maps.



used in the search, we observed that a greater average phase

improvement occurred when smaller numbers of reflections

(e.g. 100) were selected.

When 100–500 phases were varied and combined with the

original centroid phases, ’B, for the remaining reflections, a

large majority of the test runs showed a substantial improve-

ment in the quality of the map after density modification for

the group II intron and for the gene V protein. Furthermore,

application of the SISA procedure greatly facilitated auto-

mated model building for the latter.

The calculation time for the search depends on the size of

the structures and the numbers of selected reflections. From

the three test cases, the smallest structure, the gene V protein,

has 682 non-H atoms with around 2500 reflections in space

group C2. Calculations took about 15 min for the 100 stron-

gest reflections and 1.2 h for the 500 strongest reflections on a

2.4 GHz CPU. The largest structure, group II intron (case II),

has 1497 non-H atoms with around 7400 reflections in space

group P6122. We recorded calculation times of 2 and 10.5 h for

100 and 500 selected reflections, respectively.

Phases optimized by the procedure in SISA will be useful

for SIR/SAD data sets which produce an electron-density map

with marginal quality. SISA can be downloaded from http://

www.biochem.uni-luebeck.de/public/software/sisa/sisa.html and

will be incorporated into the PHENIX software suite.
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